Задаци

  • 1.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    Ниједан од понуђених одговора
    \(0 \)
    \(1 \)
    \(2 \)
    \(3 \)

    Провери одговоре Не знам

  • 2.      

    Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\)  једнако:

     

     \(\frac{2x+1}{x+3}\)
    \(1\)
    \(\frac{2x-1}{x+2}\)
    \(\frac{x+1}{x+2}\)  
    \(\frac{5x+3}{5x+1}\)  

    Провери одговоре Не знам

  • 3.      

    Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:

    \(45^{\circ}\)
    \(15^{\circ}\)
    \(22,5^{\circ}\)
    \(30^{\circ}\)
    \(60^{\circ}\)

    Провери одговоре Не знам

  • 4.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(a^6\)
    \(\sqrt[4]{a^7}\)
    \(\sqrt[4]{a^{11}}\)
    \(a^2\)
    \(\sqrt[4]{a^9}\)

    Провери одговоре Не знам

  • 5.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(-\frac{1}{2}\)
    \(\frac{1}{11}\)
    \(-\frac{1}{22}\)
    \(\frac{1}{2}\)
    \(\frac{1}{22}\)

    Провери одговоре Не знам

  • 6.      

    Вредност израза \(\left ( \frac{\left ( -0,4 \right )^{3}}{\left ( -0,8 \right )^{3}}- \frac{\left ( -0,8 \right )^{3}}{\left ( -0,4 \right )^{3}} \right ):\left ( \frac{3}{4}-3 \right )\) једнака је:

    \(\frac{7}{2} \) 
    \(\frac{4}{9} \) 
    \(\frac{63}{8} \)
    \(\frac{9}{2} \) 
    \(\frac{7}{9} \) 

    Провери одговоре Не знам

  • 7.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(84\)
    \(21\)
    \(48\)
    \(1\)
    \(5\)

    Провери одговоре Не знам

  • 8.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([6,8)\)
    \([3\sqrt{3},6)\)
    \([\sqrt{3},2\sqrt{3})\)
    \(\emptyset\)
    \((2\sqrt{3},3\sqrt{3})\)

    Провери одговоре Не знам

  • 9.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(10cm\)      
     такав трапез не постоји
    \(5cm\)  
    \(20cm\)
    \(6cm\)

    Провери одговоре Не знам

  • 10.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(0\)
    \(\sqrt{2}\)
    \(\frac{2}{3}\sqrt{3}\)
    \(2\)
    \(\frac{\sqrt{6}}{6}\)

    Провери одговоре Не знам

  • 11.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{3}-\sqrt{2}) \)
    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{2}-1) \)

    Провери одговоре Не знам

  • 12.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(30^o \)
    \(45^o \)
    \(60^o \)
    \(15^o \)
    \(75^o \)

    Провери одговоре Не знам

  • 13.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)

    Провери одговоре Не знам

  • 14.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(-2-\sqrt{5}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(\frac{1-\sqrt{5}}{16}\)
    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)

    Провери одговоре Не знам

  • 15.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−2, 2)\)  
    \([2, 4]\)
    \([−4, −2)\)   
    \([−10, −8)\)  
    \([−8, −4)\)

    Провери одговоре Не знам

  • 16.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((-\infty,a)\cup[b,c)\)
    \((-\infty,a]\cup(b,c)\)
    \((a,b)\cup\{c\}\)
    \((-\infty,a)\cup(d,+\infty)\)

    Провери одговоре Не знам

  • 17.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(4\sqrt{3} \)
    \(4 \)
    \(1 \)
    \(2\sqrt{3}\)
    \(2\)

    Провери одговоре Не знам

  • 18.      

    Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:

    \((\frac{1}{16}, 16)\)
    \((0, 8)\)  
    \((0, 16)\)
    \((\frac{1}{2}, 16)\)
    \((1, 16)\)

    Провери одговоре Не знам

  • 19.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(\frac{\pi^2-1}{2} \)
    \(12\pi -1 \)
    \(3\pi +1 \)
    \(5\pi +2 \)
    \(\frac{5\pi}{2}\)

    Провери одговоре Не знам

  • 20.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

    \(\frac{5a}{4}\)
    \(\frac{a+1}{a}\)
    \(\frac{\sqrt{5}a}{4}\)
     \(\frac{3a}{2}\)  
    \(\frac{3a}{\sqrt{2}}\)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време