Задаци

  • 1.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(\frac{5}{2}\)
    \(1\)
    \(3\)
    \(2\)
    \(\frac{3}{2}\)

    Провери одговоре Не знам

  • 2.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([2, 4]\)
    \([−2, 2)\)  
    \([−10, −8)\)  
    \([−8, −4)\)
    \([−4, −2)\)   

    Провери одговоре Не знам

  • 3.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{3} \)
    \(\sqrt{2} \)
    \(\sqrt{5} \)
    \(0 \)
    \(\sqrt{7} \)

    Провери одговоре Не знам

  • 4.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(15\cdot 6!\)
    \(30\cdot 6!\)
    \(\frac{8!}{4!}\)
    \(2\cdot 6!\)  
    \(\frac{(8!)^2}{2}\)

    Провери одговоре Не знам

  • 5.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    \(\frac{5}{2}\)
    17
    \(\frac{1}{2}\)
    \(-\frac{1}{2}\)
    5

    Провери одговоре Не знам

  • 6.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(−2\varepsilon −1−2i \)
    \(2\varepsilon −1−2i \)
    \(−2\varepsilon −1+2i \)
    \(−2\varepsilon +1−2i \)
    \(2\varepsilon +1−2i \)

    Провери одговоре Не знам

  • 7.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{16}{27}R^3\pi\)
    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{4}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)
    \(\frac{1}{\sqrt{2}}R^3\pi\)

    Провери одговоре Не знам

  • 8.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)
    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)

    Провери одговоре Не знам

  • 9.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(1 \)
    \(3 \)
    \(5 \)
    \(14 \)
    \(17 \)

    Провери одговоре Не знам

  • 10.      

    Ако су \(A\) и \(B\) тачке на кругу \(x^2  + y^2  + 4x + 4y + 5  =  0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако: 
     

     

    \(5\sqrt{3}\)
    \(5-\sqrt{3}\)
    \(10\)  
    \(5\sqrt{3}+5\)  
    \(5\)  

    Провери одговоре Не знам

  • 11.      

    Збир првих 2012 чланова аритметичке прогресије \(\frac{2011}{2012}, \frac{2010}{2012}, \frac{2009}{2012}, \cdots \) износи:

    \(\frac{2011}{2} \)
    Ни један од понуђених одговора
    \(\frac{2013}{2} \)
    \(\frac{2011}{4} \)
    \(\frac{2013}{4} \)

    Провери одговоре Не знам

  • 12.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(48\)
    \(21\)
    \(84\)
    \(5\)
    \(1\)

    Провери одговоре Не знам

  • 13.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{1-\sqrt{5}}{16}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(-2-\sqrt{5}\)

    Провери одговоре Не знам

  • 14.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(-\frac{1}{22}\)
    \(\frac{1}{11}\)
    \(\frac{1}{2}\)
    \(\frac{1}{22}\)
    \(-\frac{1}{2}\)

    Провери одговоре Не знам

  • 15.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(-\frac{1}{2}\)
    \(\frac{3}{5}\)
    \(3\)
    \(\frac{1}{3}\)
    \(0\)

    Провери одговоре Не знам

  • 16.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    80°
    100°
    60°
    120°
    40°

    Провери одговоре Не знам

  • 17.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{3}{2}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{5}}{3}\)

    Провери одговоре Не знам

  • 18.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((a,b)\cup\{c\}\)
    \((-\infty,a)\cup[b,c)\)
    \((-\infty,a]\cup(b,c)\)

    Провери одговоре Не знам

  • 19.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    4cm
    3cm
    2,5cm
    2cm
    3,5cm

    Провери одговоре Не знам

  • 20.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(6\)
    \(5\)
    \(-5\)
    \(-6\)
    \(0\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време