Задаци

  • 1.      

    Дужина крака једнокраког троугла је \(5cm\), а висине која одговара основици \(3cm\). У тај троугао уписан је правоугаоник максималне површине тако да једна страница правоугаоника припада основици троугла. Обим тог правоугаоника је:

    11 cm
    10 cm
    7 cm
    8 cm
    9 cm

    Провери одговоре Не знам

  • 2.      

    Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:

    \(    -\sqrt{3}        \)  
    \(     2\sqrt{3}       \)  
    \(  1       \)
    \( \sqrt{3}  \)
    \(   -1    \)

    Провери одговоре Не знам

  • 3.      

     Ако је \(a\neq -\frac{1}{2}\) и \(\left | a \right |\neq 2\) , онда је израз \(\left ( \frac{2a+1}{a+2}-\frac{4a+2}{4-a^{2}} \right ):\frac{2a+1}{a-2}+\left ( \frac{a+2}{2} \right )^{-1}\) идентички једнак изразу:

    \(2 \)
    \(\frac{а}{a+2} \)
    \(\frac{1}{a+2} \)
    \(а \)
    \(1 \)

    Провери одговоре Не знам

  • 4.      

    Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:

     

    \(12\)      
    \(17\)
     \(14\)  
    \(15\)
     \(13\)

    Провери одговоре Не знам

  • 5.      

     Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:

    \(0 \)
    \(64 \)
    \(-1 \)
    \(1 \)
    [math]4 [/math

    Провери одговоре Не знам

  • 6.      

    Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:

    \( 3x + 2y - 5 = 0 \) 
    \( x – 2y + 5 = 0 \) 
    \( 3x – 2y + 5 = 0 \)
    \( x – y + 2 = 0 \) 
    \( 2x - 3y + 5 = 0 \) 

    Провери одговоре Не знам

  • 7.      

    Производ свих реалних решења једначине \( \sqrt{10+x}-\sqrt{5-x}=\sqrt{1+x}\) једнак је:


     

    \(-\frac{4}{5}\)
    \(\frac{6}{5}\)
    \(\frac{2}{5}\)  
    \(-\frac{2}{5}\)
    \(\frac{4}{5}\)      

    Провери одговоре Не знам

  • 8.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(5 \)  
    \( 1 \)  
    \(4\)  
    \(3\)
    \(2\)

    Провери одговоре Не знам

  • 9.      

     Број решења једначине \( \sin(x-\frac{\pi}{3})=\frac{1}{2}\) у интервалу \([-2\pi, 2\pi]\) je:

     

    \(3\)
    \(4\)
    \(5\)    
    \(1\)
    \(2\)  

    Провери одговоре Не знам

  • 10.      

    Израз \(\frac{sin(\alpha+\beta)+sin(\alpha-\beta)}{cos(\alpha+\beta)+cos(\alpha-\beta)}\) идентички је једнак изразу:

    \( tg\alpha \)
    \( \frac{sin\alpha}{cos\alpha} \) 
    \( tg2\alpha \) 
    \( sin(\alpha+\beta) \) 
    \( tg(\alpha+\beta) \) 

    Провери одговоре Не знам

  • 11.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \(    -\frac{3}{5}   \)  
    \(            \frac{5}{3}          \)  
    \(   \frac{3}{5}     \)
    \( -\frac{5}{3}     \)
    \(  -\frac{\sqrt{3}}{6}     \)

    Провери одговоре Не знам

  • 12.      

     Дата је геометријска прогресија \(a_1, a_2, a_3, . . . \). Ако је \(a_1+a_7 =\frac{65}{16}\) и \(a_2+a_8 =\frac{65}{32}\) , онда је \(\frac{ a_3}{ a_{13}} \) једнако:

    \(2^{10} \)
    \(2^{-12} \)
    \(2^{12} \)
    \(2^{13} \)
    \(2^{-10} \)

    Провери одговоре Не знам

  • 13.      

     Ako за решења \(x_1\) и \(x_2\) једначине \(kx^2-(3k+2)x+7=0\) важи \( \frac{1}{x_1}\frac{1}{x_2}=8\), вредност параметра \(k\) припада интервалу:

    \((5,10)\)    
    \((\frac{1}{2},5)\)
    \((10,20)\)
    \((-20,-10)\)    
    \((-10,0)\)

    Провери одговоре Не знам

  • 14.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

     \(1\)  
    \(-1\)
    \(6      \)
    \(4\)
     \(-6\)

    Провери одговоре Не знам

  • 15.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(  -12     \)
    \(    6\) 
    \(    3  \) 
    \(   -6\)
    \(  -18     \)

    Провери одговоре Не знам

  • 16.      

    Вредност израза \(\frac{8}{3-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\) je:

    \( 10 \)
    \( 2\sqrt{5} \) 
    \( 5 \)
    \( 1 \) 
    \( \sqrt{5} \) 

    Провери одговоре Не знам

  • 17.      

    Ако се цена артикла најпре повећа за \(30\%\) а онда смањи за \(20\%\) коначна цена артикла у односу на почетну цену је:

    већа за\( 10\% \) 
    већа за\( 5\% \) 
    мања за\( 2\% \) 
    већа за\( 4\% \)
    већа за\( 2\% \) 

    Провери одговоре Не знам

  • 18.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(   \frac{38}{9}   \)
    \(  9  \)
    \(    \frac{39}{2}   \)  
    \(  7    \)
    \(   \frac{5}{2}   \)  

    Провери одговоре Не знам

  • 19.      

    Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:

    \(   0\)
    \(  3    \)
    \( 1 \)
    већи од \(     3     \)   
    \(    2     \)  

    Провери одговоре Не знам

  • 20.      

    Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:

     

    \(24\)        
    \(28\)    
    \( 27\)
    \(26\)
    \(25\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време