Задаци

  • 1.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(12\)    
    \(16\)
    \(13\)
    \(15\)  
    \(14\)  

    Провери одговоре Не знам

  • 2.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \(   \frac{3}{5}     \)
    \(            \frac{5}{3}          \)  
    \(    -\frac{3}{5}   \)  
    \(  -\frac{\sqrt{3}}{6}     \)
    \( -\frac{5}{3}     \)

    Провери одговоре Не знам

  • 3.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(    \frac{2\pi}{9}    \) 
    \(  \frac{\pi}{8}    \)
    \(   \frac{\pi}{3} \)
    \(  \frac{\pi}{6}  \)
    \(   \frac{\pi}{4}    \)  

    Провери одговоре Не знам

  • 4.      

    Збир свих решења једначине \(2^{x^2-3x}+(\frac{1}{2})^{x^2-3x-4}=17\) једнак је:

    \(   9\)
    \(    12     \)   
    \(  3    \)
    \( 6 \)
    \(     15    \)

    Провери одговоре Не знам

  • 5.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \(4\)
    \(-12\)
     \( 8\)
    \(-6 \)        
    \( 16\)

    Провери одговоре Не знам

  • 6.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(945\)  
    \(128\)    
    \(41\)  
    \(512\)
    \(420\)

    Провери одговоре Не знам

  • 7.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(7\)
    \(-3\)  
    \(3\)
    \(-12\) 
    \(-7\)

    Провери одговоре Не знам

  • 8.      

     Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако: 

     

    \(\frac{1}{a+2}\)
    \(\frac{2}{a+1}\)
    \(\frac{a+1}{2}\)     
     \(\frac{1}{2(a+1)} \)  
    \(\frac{1}{2a+1}\)

    Провери одговоре Не знам

  • 9.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(-\frac{7\sqrt{2}}{34} \)  
    \(-\frac{15\sqrt{2}}{34}\)  
    \(\frac{7\sqrt{2}}{34}\) 

    Провери одговоре Не знам

  • 10.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \(   40 \)
    \(    120     \)
    \(  30    \)
    \(     240    \)   
    \( 60 \)

    Провери одговоре Не знам

  • 11.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

     \(f_1\neq f_2=f_3\)    
    \(f_1=f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  
    \(f_1=f_2\neq f_3\)  
    \(f_1\neq f_2\neq f_3\)    

    Провери одговоре Не знам

  • 12.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(  f_1 = f_2 = f_3  \)
    \(   f_3 = f_1 \neq f_2   \)  
    \( f_1 = f_2 \neq f_3    \) 
    \(   f_1 \neq f_2 = f_3   \)
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)

    Провери одговоре Не знам

  • 13.      

    Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:

    бесконачно много 
    \(   4\)
    \( 3 \)
    \(  2    \)
    \(     5    \)   

    Провери одговоре Не знам

  • 14.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{3\pi}{4} \) 
    \(\frac{\pi}{2}\)
    \(\frac{5\pi}{6}   \) 
    \(\frac{5\pi}{12}\)        
     \(\frac{2\pi}{3}\)

    Провери одговоре Не знам

  • 15.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(  -12     \)
    \(  -18     \)
    \(   -6\)
    \(    6\) 
    \(    3  \) 

    Провери одговоре Не знам

  • 16.      

    Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:

    већи од \(     3     \)   
    \(    2     \)  
    \(   0\)
    \( 1 \)
    \(  3    \)

    Провери одговоре Не знам

  • 17.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(  7    \)
    \(    \frac{39}{2}   \)  
    \(  9  \)
    \(   \frac{38}{9}   \)
    \(   \frac{5}{2}   \)  

    Провери одговоре Не знам

  • 18.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    6
    4
    5
    3      

    Провери одговоре Не знам

  • 19.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{3}{4}\)  
    \(\frac{5}{6}\)  
    \(\frac{3}{2} \)   
    \(\frac{1}{2}\)  
    \(\frac{1}{8}\)        

    Провери одговоре Не знам

  • 20.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

    \(10\)
    \(1\)    
    \(5-2\sqrt{6}\)
    \(5\)  
     \(1+2\sqrt{6}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време